Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins.

Identifieur interne : 001A25 ( Main/Exploration ); précédent : 001A24; suivant : 001A26

Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins.

Auteurs : A F Shamji [États-Unis] ; F G Kuruvilla ; S L Schreiber

Source :

RBID : pubmed:11137008

Descripteurs français

English descriptors

Abstract

BACKGROUND

In all organisms, nutrients are primary regulators of signaling pathways that control transcription. In Saccharomyces cerevisiae, the Tor proteins regulate the transcription of genes sensitive to the quality of available nitrogen and carbon sources. Formation of a ternary complex of the immunosuppressant rapamycin, its immunophilin receptor Fpr1p and Tor1p or Tor2p results in the nuclear import of several nutrient- and stress-responsive transcription factors.

RESULTS

We show that treating yeast cells with rapamycin results in a broader modulation of functionally related gene sets than previously understood. Using chemical epistasis and vector-based global expression analyses, we partition the transcriptional program induced by rapamycin among five effectors (TAP42, MKS1, URE2, GLN3, GAT1) of the Tor proteins, and identify how the quality of carbon and nitrogen sources impinge upon components of the program. Biochemical data measuring Ure2p phosphorylation coupled with the partition analysis indicate that there are distinct signaling branches downstream of the Tor proteins.

CONCLUSIONS

Whole-genome transcription profiling reveals a striking similarity between shifting to low-quality carbon or nitrogen sources and treatment with rapamycin. These data suggest that the Tor proteins are central sensors of the quality of carbon and nitrogen sources. Depending on which nutrient is limited in quality, the Tor proteins can modulate a given pathway differentially. Integrating the partition analysis of the transcriptional program of rapamycin with the biochemical data, we propose a novel architecture of Tor protein signaling and of the nutrient-response network, including the identification of carbon discrimination and nitrogen discrimination pathways.


DOI: 10.1016/s0960-9822(00)00866-6
PubMed: 11137008


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins.</title>
<author>
<name sortKey="Shamji, A F" sort="Shamji, A F" uniqKey="Shamji A" first="A F" last="Shamji">A F Shamji</name>
<affiliation wicri:level="4">
<nlm:affiliation>Howard Hughes Medical Institute, Center for Genomics Research, Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Howard Hughes Medical Institute, Center for Genomics Research, Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138</wicri:regionArea>
<orgName type="university">Université Harvard</orgName>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kuruvilla, F G" sort="Kuruvilla, F G" uniqKey="Kuruvilla F" first="F G" last="Kuruvilla">F G Kuruvilla</name>
</author>
<author>
<name sortKey="Schreiber, S L" sort="Schreiber, S L" uniqKey="Schreiber S" first="S L" last="Schreiber">S L Schreiber</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2000">2000 Dec 14-28</date>
<idno type="RBID">pubmed:11137008</idno>
<idno type="pmid">11137008</idno>
<idno type="doi">10.1016/s0960-9822(00)00866-6</idno>
<idno type="wicri:Area/Main/Corpus">001A23</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001A23</idno>
<idno type="wicri:Area/Main/Curation">001A23</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001A23</idno>
<idno type="wicri:Area/Main/Exploration">001A23</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins.</title>
<author>
<name sortKey="Shamji, A F" sort="Shamji, A F" uniqKey="Shamji A" first="A F" last="Shamji">A F Shamji</name>
<affiliation wicri:level="4">
<nlm:affiliation>Howard Hughes Medical Institute, Center for Genomics Research, Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Howard Hughes Medical Institute, Center for Genomics Research, Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138</wicri:regionArea>
<orgName type="university">Université Harvard</orgName>
<placeName>
<settlement type="city">Cambridge (Massachusetts)</settlement>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kuruvilla, F G" sort="Kuruvilla, F G" uniqKey="Kuruvilla F" first="F G" last="Kuruvilla">F G Kuruvilla</name>
</author>
<author>
<name sortKey="Schreiber, S L" sort="Schreiber, S L" uniqKey="Schreiber S" first="S L" last="Schreiber">S L Schreiber</name>
</author>
</analytic>
<series>
<title level="j">Current biology : CB</title>
<idno type="ISSN">0960-9822</idno>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon (metabolism)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Nitrogen (metabolism)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (genetics)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (metabolism)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (physiology)</term>
<term>Signal Transduction (physiology)</term>
<term>Sirolimus (pharmacology)</term>
<term>Transcription, Genetic (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Azote (métabolisme)</term>
<term>Carbone (métabolisme)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (génétique)</term>
<term>Phosphotransferases (Alcohol Group Acceptor) (métabolisme)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (physiologie)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Transcription génétique (MeSH)</term>
<term>Transduction du signal (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon</term>
<term>Fungal Proteins</term>
<term>Nitrogen</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Protéines fongiques</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Azote</term>
<term>Carbone</term>
<term>Phosphotransferases (Alcohol Group Acceptor)</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Transcription génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>In all organisms, nutrients are primary regulators of signaling pathways that control transcription. In Saccharomyces cerevisiae, the Tor proteins regulate the transcription of genes sensitive to the quality of available nitrogen and carbon sources. Formation of a ternary complex of the immunosuppressant rapamycin, its immunophilin receptor Fpr1p and Tor1p or Tor2p results in the nuclear import of several nutrient- and stress-responsive transcription factors.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We show that treating yeast cells with rapamycin results in a broader modulation of functionally related gene sets than previously understood. Using chemical epistasis and vector-based global expression analyses, we partition the transcriptional program induced by rapamycin among five effectors (TAP42, MKS1, URE2, GLN3, GAT1) of the Tor proteins, and identify how the quality of carbon and nitrogen sources impinge upon components of the program. Biochemical data measuring Ure2p phosphorylation coupled with the partition analysis indicate that there are distinct signaling branches downstream of the Tor proteins.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Whole-genome transcription profiling reveals a striking similarity between shifting to low-quality carbon or nitrogen sources and treatment with rapamycin. These data suggest that the Tor proteins are central sensors of the quality of carbon and nitrogen sources. Depending on which nutrient is limited in quality, the Tor proteins can modulate a given pathway differentially. Integrating the partition analysis of the transcriptional program of rapamycin with the biochemical data, we propose a novel architecture of Tor protein signaling and of the nutrient-response network, including the identification of carbon discrimination and nitrogen discrimination pathways.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11137008</PMID>
<DateCompleted>
<Year>2001</Year>
<Month>06</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>07</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0960-9822</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<Issue>24</Issue>
<PubDate>
<MedlineDate>2000 Dec 14-28</MedlineDate>
</PubDate>
</JournalIssue>
<Title>Current biology : CB</Title>
<ISOAbbreviation>Curr Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins.</ArticleTitle>
<Pagination>
<MedlinePgn>1574-81</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">In all organisms, nutrients are primary regulators of signaling pathways that control transcription. In Saccharomyces cerevisiae, the Tor proteins regulate the transcription of genes sensitive to the quality of available nitrogen and carbon sources. Formation of a ternary complex of the immunosuppressant rapamycin, its immunophilin receptor Fpr1p and Tor1p or Tor2p results in the nuclear import of several nutrient- and stress-responsive transcription factors.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We show that treating yeast cells with rapamycin results in a broader modulation of functionally related gene sets than previously understood. Using chemical epistasis and vector-based global expression analyses, we partition the transcriptional program induced by rapamycin among five effectors (TAP42, MKS1, URE2, GLN3, GAT1) of the Tor proteins, and identify how the quality of carbon and nitrogen sources impinge upon components of the program. Biochemical data measuring Ure2p phosphorylation coupled with the partition analysis indicate that there are distinct signaling branches downstream of the Tor proteins.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Whole-genome transcription profiling reveals a striking similarity between shifting to low-quality carbon or nitrogen sources and treatment with rapamycin. These data suggest that the Tor proteins are central sensors of the quality of carbon and nitrogen sources. Depending on which nutrient is limited in quality, the Tor proteins can modulate a given pathway differentially. Integrating the partition analysis of the transcriptional program of rapamycin with the biochemical data, we propose a novel architecture of Tor protein signaling and of the nutrient-response network, including the identification of carbon discrimination and nitrogen discrimination pathways.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shamji</LastName>
<ForeName>A F</ForeName>
<Initials>AF</Initials>
<AffiliationInfo>
<Affiliation>Howard Hughes Medical Institute, Center for Genomics Research, Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kuruvilla</LastName>
<ForeName>F G</ForeName>
<Initials>FG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schreiber</LastName>
<ForeName>S L</ForeName>
<Initials>SL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>GM-38627</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Curr Biol</MedlineTA>
<NlmUniqueID>9107782</NlmUniqueID>
<ISSNLinking>0960-9822</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D017853">Phosphotransferases (Alcohol Group Acceptor)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017853" MajorTopicYN="N">Phosphotransferases (Alcohol Group Acceptor)</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="Y">Transcription, Genetic</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2001</Year>
<Month>1</Month>
<Day>4</Day>
<Hour>11</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2001</Year>
<Month>6</Month>
<Day>23</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2001</Year>
<Month>1</Month>
<Day>4</Day>
<Hour>11</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11137008</ArticleId>
<ArticleId IdType="pii">S0960-9822(00)00866-6</ArticleId>
<ArticleId IdType="doi">10.1016/s0960-9822(00)00866-6</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Massachusetts</li>
</region>
<settlement>
<li>Cambridge (Massachusetts)</li>
</settlement>
<orgName>
<li>Université Harvard</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Kuruvilla, F G" sort="Kuruvilla, F G" uniqKey="Kuruvilla F" first="F G" last="Kuruvilla">F G Kuruvilla</name>
<name sortKey="Schreiber, S L" sort="Schreiber, S L" uniqKey="Schreiber S" first="S L" last="Schreiber">S L Schreiber</name>
</noCountry>
<country name="États-Unis">
<region name="Massachusetts">
<name sortKey="Shamji, A F" sort="Shamji, A F" uniqKey="Shamji A" first="A F" last="Shamji">A F Shamji</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A25 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A25 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11137008
   |texte=   Partitioning the transcriptional program induced by rapamycin among the effectors of the Tor proteins.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11137008" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020